
Haqq - Social
Smart Contract Security

Assessment

Prepared by: Halborn

Date of Engagement: August 7th, 2023 - August 11th, 2023

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 ASSESSMENT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

2 RISK METHODOLOGY 8

2.1 EXPLOITABILITY 9

2.2 IMPACT 10

2.3 SEVERITY COEFFICIENT 12

2.4 SCOPE 14

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 15

4 FINDINGS & TECH DETAILS 16

4.1 (HAL-01) ANONYMOUS ACCESS TO PRIVILEGED FUNCTIONS - CRITICAL(10)

18

Description 18

Code Location 18

Proof Of Concept 19

BVSS 20

Recommendation 20

Remediation Plan 20

4.2 (HAL-02) VERIFIER DATA CANNOT BE FULLY DELETED - MEDIUM(5.0) 21

Description 21

Code Location 21

Proof Of Concept 21

1



BVSS 23

Recommendation 23

Remediation Plan 23

4.3 (HAL-03) ZERO ADDRESS AND ZERO LENGTH CHECKS MISSING - LOW(2.5)

24

Description 24

Code Location 24

BVSS 25

Recommendation 25

Remediation Plan 25

4.4 (HAL-04) REDUNDANT STORAGE DATA - LOW(2.5) 26

Description 26

Code Location 26

BVSS 28

Recommendation 28

Remediation Plan 28

4.5 (HAL-05) SINGLE STEP OWNERSHIP TRANSFER PROCESS - INFORMA-

TIONAL(0.7) 29

Description 29

Code Location 29

BVSS 30

Recommendation 30

Remediation Plan 30

4.6 (HAL-06) IMMUTABLE RELAYER ADDRESSES ARRAY - INFORMATIONAL(0.7)

31

Description 31

Code Location 31

2



BVSS 31

Recommendation 32

Remediation Plan 32

4.7 (HAL-07) REDUNDANT COMPUTATION INSIDE LOOP - INFORMATIONAL(0.0)

33

Description 33

Code Location 33

Proof of Concept 34

BVSS 34

Recommendation 34

Remediation Plan 35

4.8 (HAL-08) INEFFICTIENT FOR LOOPS - INFORMATIONAL(0.0) 36

Description 36

Code Location 36

Proof of Concept 37

BVSS 38

Recommendation 38

Remediation Plan 38

5 AUTOMATED TESTING 39

5.1 STATIC ANALYSIS REPORT 40

Description 40

Results 40

Results summary 41

5.2 AUTOMATED SECURITY SCAN 42

Description 42

Results 42

3



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/09/2023 Piotr Cielas

0.2 Draft Version 08/10/2023 Piotr Cielas

0.3 Draft Review 08/11/2023 Gabi Urrutia

1.0 Remediation Plan 09/02/2023 Piotr Cielas

1.1 Remediation Plan Review 09/05/2023 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com


5

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

The Social smart contracts by Haqq supports their implementation of

Shamir’s Secret Sharing system by storing data required to reconstruct

users’ secrets.

Haqq engaged Halborn to conduct a security assessment on their smart

contracts beginning on August 7th, 2023 and ending on August 11th, 2023.

The security assessment was scoped to the smart contracts provided in

the social GitHub repository. Commit hashes and further details can be

found in the Scope section of this report.

1.2 ASSESSMENT SUMMARY

Halborn was provided 1 week for the engagement and assigned 1 full-time

security engineer to review the security of the smart contracts in scope.

The engineer is a blockchain and smart contract security experts with

advanced penetration testing and smart contract hacking skills, and deep

knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

• Identify potential security issues within the smart contracts.

• Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some security risks that were mostly

addressed by Haqq.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/haqq-network/social/


to the scope of this assessment. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the assessment:

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/functions

(solgraph).

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs (MythX).

• Static Analysis of security for scoped contract, and imported func-

tions (Slither).

• Testnet deployment (Foundry).

7

EX
EC

UT
IV

E
OV

ER
VI

EW



2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

8

EX
EC

UT
IV

E
OV

ER
VI

EW



2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

9

EX
EC

UT
IV

E
OV

ER
VI

EW



2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

10

EX
EC

UT
IV

E
OV

ER
VI

EW



Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

11

EX
EC

UT
IV

E
OV

ER
VI

EW



2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

12

EX
EC

UT
IV

E
OV

ER
VI

EW



The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

13

EX
EC

UT
IV

E
OV

ER
VI

EW



2.4 SCOPE

Code repositories:

1. Social

• Repository: social

• Commit IDs:

• Initial: e12c8de

• Remediation Plan: 4ef69aa

• Smart contracts in scope:

1. VerifierList (contracts/contracts/VerifierList.sol)

2. RelayerList (contracts/contracts/RelayerList.sol)

3. RelayerStorage (contracts/contracts/RelayerStorage.sol)

Out-of-scope

• Third-party libraries and dependencies.

• Economic attacks.

14

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/haqq-network/social
https://github.com/haqq-network/social/commit/e12c8de9562b311724461e6e6dc6c4b1df1afeb0
https://github.com/haqq-network/social/commit/4ef69aa784a64995b7cc06b9da44cd624bc6bb79


3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 0 1 2 4

15

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) ANONYMOUS ACCESS TO
PRIVILEGED FUNCTIONS

Critical (10) SOLVED - 08/30/2023

(HAL-02) VERIFIER DATA CANNOT BE
FULLY DELETED

Medium (5.0) SOLVED - 08/30/2023

(HAL-03) ZERO ADDRESS AND ZERO
LENGTH CHECKS MISSING

Low (2.5) SOLVED - 09/04/2023

(HAL-04) REDUNDANT STORAGE DATA Low (2.5) SOLVED - 08/30/2023

(HAL-05) SINGLE STEP OWNERSHIP
TRANSFER PROCESS

Informational
(0.7)

SOLVED - 08/30/2023

(HAL-06) IMMUTABLE RELAYER
ADDRESSES ARRAY

Informational
(0.7)

SOLVED - 09/04/2023

(HAL-07) REDUNDANT COMPUTATION
INSIDE LOOP

Informational
(0.0)

SOLVED - 08/30/2023

(HAL-08) INEFFICTIENT FOR LOOPS
Informational

(0.0)
ACKNOWLEDGED

16

EX
EC

UT
IV

E
OV

ER
VI

EW



17

FINDINGS & TECH
DETAILS



4.1 (HAL-01) ANONYMOUS ACCESS TO
PRIVILEGED FUNCTIONS - CRITICAL(10)

Description:

The VerifierList contract stores and manages Verifier records for Haqq

Social. Verifier objects persist the data required to verify user JWTs

when received from a KeyNode. Only the contract owner is allowed to add new

Verifiers however the deleteVerifier function lacks such authorization

checks and so it allows everyone to delete Verifiers added by the contract

owner.

When exploited by a malicious entity, this vulnerability can effectively

halt the entire Social system.

A similar issue was identified in the RelayerList contract, which manages

Relayer data. Relayers are used by the mobile app to fetch user identity

data. The createRelayerList function does not require any authorization

and allows anonymous access to create and updating Relayer lists for

arbitrary users. This vulnerability, if exploited, can lead to serious

disruptions in the off-chain components of the Social network.

Code Location:

Listing 1: contracts/contracts/VerifierList.sol (Line 74)

72 function deleteVerifier(string memory _id) external {

73 require(keccak256(abi.encodePacked(verifiers[_id].id)) !=

ë keccak256(abi.encodePacked("")), "Verifier does not exist");

74 delete verifiers[_id];

75 }

Listing 2: contracts/contracts/RelayerList.sol

55 function createRelayerList(bytes32 socialIDHash) external {

56 address [] memory copiedRelayerAddresses = new address [](

ë relayerAddresses.length);

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



57 for (uint256 i = 0; i < relayerAddresses.length; i++) {

58 copiedRelayerAddresses[i] = relayerAddresses[i];

59 }

60

61 uint256 copiedLength = relayerAddresses.length;

62 }

Proof Of Concept:

VerifierList

1. Deploy the VerifierList contract.

2. As the contract owner, add a new Verifier.

3. As another user, delete the recently added Verifier.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



RelayerList

1. Deploy the RelayerList contract.

2. As any user, create a Relayer list for any social ID.

BVSS:

AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:N/S:U (10)

Recommendation:

To prevent anonymous users from altering sensitive areas of contract

state, consider protecting the deleteVerifier and createRelayerList func-

tions with the onlyOwner modifier.

Remediation Plan:

SOLVED: The Haqq team fixed this issue in commit 9fcd3e1. The

deleteVerifier and createRelayerList functions are now protected with

the onlyOwner modifier.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/commit/9fcd3e1c6164dae43e35f308fd9a16898215af58


4.2 (HAL-02) VERIFIER DATA CANNOT
BE FULLY DELETED - MEDIUM (5.0)

Description:

The VerifierList contract stores and manages Verifier records for Haqq

Social. Verifier objects persist the data required to verify user JWTs

when received from a KeyNode. Only the contract owner is allowed to

add new Verifiers. A verifier can be removed from storage with the

deleteVerifier function, which uses the delete keyword on a Verifier at a

user-supplied id. However, because the Verifier structs store the checks

mappings, those mappings cannot be reset with delete which causes the

deleteVerifier function to fail silently.

This issue may disrupt the operations of the off-chain components of the

Social network.

Code Location:

Listing 3: contracts/contracts/VerifierList.sol (Line 72)

70 function deleteVerifier(string memory _id) external {

71 require(keccak256(abi.encodePacked(verifiers[_id].id)) !=

ë keccak256(abi.encodePacked("")), "Verifier does not exist");

72 delete verifiers[_id];

73 }

Proof Of Concept:

VerifierList

1. Deploy the VerifierList contract.

2. As the contract owner, add a new Verifier.

3. Delete the recently added Verifier.

4. Query the contract for any check for the Verifier.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (5.0)

Recommendation:

To fully purge the checks mapping, consider implementing a deleteCheck

function, which would delete a particular value for the provided key.

Remediation Plan:

SOLVED: The Haqq team solved this issue in commit 9fcd3e1. The Verifier

struct now includes the checksSize field which stores the number of Checks

for a given Verifier and the deleteVerifier function iterates over all

Checks and deletes them before deleting the Verifier.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/commit/9fcd3e1c6164dae43e35f308fd9a16898215af58


4.3 (HAL-03) ZERO ADDRESS AND ZERO
LENGTH CHECKS MISSING - LOW (2.5)

Description:

Multiple setter functions in the VerifierList and RelayerList contracts

expect the caller to provide data of the address and string types. Those

functions fail to verify if the user-supplied addresses are not equal to

zero address, and if the provided strings are not empty. This may lead

to the contract storing corrupted or unusable data, which may affect the

normal operations of the Haqq Social network.

Code Location:

Listing 4: contracts/contracts/VerifierList.sol (Lines 58-61)

47 function addVerifier(

48 string memory _id ,

49 string memory _name ,

50 string memory _jwk_url ,

51 string memory _verifier ,

52 Check [] memory _checks

53 ) external {

54 require(msg.sender == owner (), "Only admin node can set data")

ë ;

55 require(keccak256(abi.encodePacked(verifiers[_id].id)) ==

ë keccak256(abi.encodePacked("")), "Verifier already exists");

56

57 Verifier storage v = verifiers[_id];

58 v.id = _id;

59 v.name = _name;

60 v.jwk_url = _jwk_url;

61 v.verifier = _verifier;

Listing 5: contracts/contracts/RelayerList.sol (Lines 32,34)

29 constructor (address [] memory _relayerWallets , string [] memory

ë _relayerAddress) {

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



30 require(_relayerWallets.length >= 5, "At least 5 relayer

ë addresses are required.");

31 require(_relayerWallets.length == _relayerAddress.length , "

ë Relayer wallet and address length mismatch.");

32 relayerAddresses = _relayerWallets;

33 for (uint256 i = 0; i < _relayerWallets.length; i++) {

34 _relayers[_relayerWallets[i]] = Relayer(_relayerWallets[i

ë ], _relayerAddress[i]);

35 }

36 }

Listing 6: contracts/contracts/RelayerList.sol (Line 40)

38 function addRelayer(string memory _relayerAddress , address

ë _walletAddress) external onlyOwner {

39 require(_relayers[_walletAddress ]. walletAddress == address (0),

ë "Relayer already exists.");

40 _relayers[_walletAddress] = Relayer(_walletAddress ,

ë _relayerAddress);

41 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation:

Consider validating the user supplied addresses are not equal to the zero

address and that strings are not empty.

Remediation Plan:

SOLVED: The Haqq team solved this issue in commit 4ef69aa. Addresses,

strings and byte arrays are checked not to be zero or of zero length.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/pull/28/commits/4ef69aa784a64995b7cc06b9da44cd624bc6bb79


4.4 (HAL-04) REDUNDANT STORAGE
DATA - LOW (2.5)

Description:

In the VerifierList, the verifiers mapping stores Verifer data and is

keyed by Verifier ID. One of the fields in the Verifier struct in the

VerifierList contract is string id. Similarly, in the RelayerList

contract, the _socialIDEntries mapping stores SocialID data. The

SocialIDEntry struct stored in this mapping has a field called internalID

of type string.

Verifiers in the verifier mapping are keyed by their IDs and SocialIDEntry

instances in the _socialIDEntries mapping are keyed by their IDs. In

both cases, mapping keys are repeated in mapping values, increasing gas

consumption unnecessarily.

Code Location:

Listing 7: contracts/contracts/VerifierList.sol (Line 9)

8 struct Verifier {

9 string id;

10 string name;

11 string jwk_url;

12 string verifier;

13 mapping(uint => Check) checks;

14 uint checksSize;

15 }

Listing 8: contracts/contracts/VerifierList.sol (Lines 48,58)

47 function addVerifier(

48 string memory _id ,

49 string memory _name ,

50 string memory _jwk_url ,

51 string memory _verifier ,

52 Check [] memory _checks

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



53 ) external {

54 require(msg.sender == owner (), "Only admin node can set data")

ë ;

55 require(keccak256(abi.encodePacked(verifiers[_id].id)) ==

ë keccak256(abi.encodePacked("")), "Verifier already exists");

56

57 Verifier storage v = verifiers[_id];

58 v.id = _id;

Listing 9: contracts/contracts/RelayerList.sol (Line 15)

14 struct SocialIDEntry {

15 bytes32 internalID;

16 bytes32 [] shareIndices;

17 address [] relayers;

18 }

Listing 10: contracts/contracts/RelayerList.sol (Lines 55,70)

55 function createRelayerList(bytes32 socialIDHash) external {

56 address [] memory copiedRelayerAddresses = new address [](

ë relayerAddresses.length);

57 for (uint256 i = 0; i < relayerAddresses.length; i++) {

58 copiedRelayerAddresses[i] = relayerAddresses[i];

59 }

60

61 uint256 copiedLength = relayerAddresses.length;

62 address [] memory randomRelayers = new address [](5);

63 bytes32 [] memory randomShares = new bytes32 [](5);

64

65 for (uint256 i = 0; i < 5; i++) {

66 (randomRelayers[i], copiedLength) = _pickAndRemoveRandom(

ë copiedRelayerAddresses , copiedLength);

67 randomShares[i] = _generateRandomShare(randomRelayers[i]);

68 }

69

70 _socialIDEntries[socialIDHash] = SocialIDEntry(socialIDHash ,

ë randomShares , randomRelayers);

71 }

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation:

Consider removing duplicate parameters from both structs. Please note,

implementing this change may require modifying the assertions in the

deleteVerifier and getRelayerList functions, and the boolean expression

returned by the hasRelayerList function.

Remediation Plan:

SOLVED: The Haqq team solved this issue in commit 9fcd3e1. The duplicated

parameters were removed from the Verifier and SocialIDEntry structs.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/commit/9fcd3e1c6164dae43e35f308fd9a16898215af58


4.5 (HAL-05) SINGLE STEP OWNERSHIP
TRANSFER PROCESS - INFORMATIONAL
(0.7)

Description:

The RelayerList, RelayerStorage and VerifierList contracts inherit from

the Ownable contract by OpenZeppelin. One of the features offered by this

contract is a single-step ownership transfer process. What this means

is the current contract owner can transfer contract ownership to another

address directly. If the new owner is not willing to assume the role or

the address does not yet exist, access to privileged functions in the

contract may be lost.

Code Location:

Listing 11: contracts/contracts/RelayerList.sol (Line 7)

5 import "@openzeppelin/contracts/access/Ownable.sol";

6

7 contract RelayerList is Ownable {

Listing 12: contracts/contracts/RelayerStorage.sol (Line 7)

4 import "@openzeppelin/contracts/access/Ownable.sol";

5 import "@openzeppelin/contracts/security/Pausable.sol";

6

7 contract RelayStorage is Ownable , Pausable {

Listing 13: contracts/contracts/RelayerStorage.sol (Line 6)

4 import "@openzeppelin/contracts/access/Ownable.sol";

5

6 contract VerifierList is Ownable {

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



BVSS:

AO:S/AC:L/AX:H/C:N/I:C/A:N/D:N/Y:N/R:N/S:U (0.7)

Recommendation:

Consider inheriting from the Ownable2Step to require the new owner confirm

the nomination before it is actually transferred.

Remediation Plan:

SOLVED: The Haqq team solved this issue in commit 9fcd3e1.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/haqq-network/social/commit/9fcd3e1c6164dae43e35f308fd9a16898215af58


4.6 (HAL-06) IMMUTABLE RELAYER
ADDRESSES ARRAY - INFORMATIONAL
(0.7)

Description:

The relayerAddresses array in the RelayerList contract stores the wallets

of the Relayers registered on contract creation. This array is immutable,

and if any of the wallets is compromised it cannot be removed from the

array. This may pose a threat to normal contract operations and the

broader network.

Code Location:

Listing 14: contracts/contracts/RelayerList.sol (Lines 32,34)

29 constructor (address [] memory _relayerWallets , string [] memory

ë _relayerAddress) {

30 require(_relayerWallets.length >= 5, "At least 5 relayer

ë addresses are required.");

31 require(_relayerWallets.length == _relayerAddress.length , "

ë Relayer wallet and address length mismatch.");

32 relayerAddresses = _relayerWallets;

33 for (uint256 i = 0; i < _relayerWallets.length; i++) {

34 _relayers[_relayerWallets[i]] = Relayer(_relayerWallets[i

ë ], _relayerAddress[i]);

35 }

36 }

BVSS:

AO:S/AC:L/AX:H/C:N/I:C/A:N/D:N/Y:N/R:N/S:U (0.7)

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

Consider implementing a removeRelayer which can be used to remove a

Relayer address from the relayerAddresses array.

Remediation Plan:

SOLVED: The Haqq team solved this issue in commit e6c9db4. Relayers

can be removed from the relayerAddresses array with the removeRelayer

function.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/commit/e6c9db4236a4f40c40a8c9b090d7b783477e054c


4.7 (HAL-07) REDUNDANT COMPUTATION
INSIDE LOOP - INFORMATIONAL (0.0)

Description:

In the RelayerList contract, the createRelayerList function selects Re-

layers for a Social ID by generating a pseudo random value and using it

as the index of a Relayer to select from the relayerAddresses array. This

pseudo random value is an uint256 parsed from a keccak256 hash of the

following environment variables:

• block.timestamp

• block.prevrandao

• msg.sender

Those variables are constant in a function call and so the pseudo random

value is constant in every iteration of the loop, therefore calculating

it in the loop unnecessarily increases gas consumption by over 200 per

iteration.

Code Location:

Listing 15: contracts/contracts/RelayerList.sol (Line 9)

8 for (uint256 i = 0; i < 5; i++) {

9 (randomRelayers[i], copiedLength) = _pickAndRemoveRandom(

ë copiedRelayerAddresses , copiedLength);

10 randomShares[i] = _generateRandomShare(randomRelayers[i]);

11 }

Listing 16: contracts/contracts/VerifierList.sol (Line 49)

48 function _pickAndRemoveRandom(address [] memory array , uint256

ë length) private view returns (address , uint256) {

49 uint256 randomIndex = uint256(keccak256(abi.encodePacked(block

ë .timestamp , block.prevrandao , msg.sender))) % length;

50 address picked = array[randomIndex ];

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



51 array[randomIndex] = array[length - 1];

52 return (picked , length - 1);

53 }

Proof of Concept:

Listing 17

1 function testGasConsumptionKeccak () public view {

2 uint256(keccak256(abi.encodePacked(block.timestamp , block.

ë prevrandao , msg.sender)));

3 }

4

5 function testGasConsumptionKeccakEmpty () public view {

6

7 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider moving the calculating of the intermediary pseudo random value

outside the for loop. Please note, implementing this change requires

modifying the _pickAndRemoveRandom function arguments list to include

the generated value.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

SOLVED: The Haqq team solved this issue in commit 9fcd3e1. The calculation

of the pseudo random value was moved outside the for loop.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/commit/9fcd3e1c6164dae43e35f308fd9a16898215af58


4.8 (HAL-08) INEFFICTIENT FOR
LOOPS - INFORMATIONAL (0.0)

Description:

For loops are used in several functions in the contracts in scope. It

was identified that all loops in the contract can be optimized to make

the contracts more gas efficient:

• when iterating over an array, cache the array length outside of

loops to avoid reading from memory/storage and pushing the length

to stack in every iteration,

• when iterating from the 0 index, do not initialize the index to 0

because all numerical values in Solidity are initialized to zero by

default,

• when incrementing the index, use preincrementation instead of

postincrementation, and do it in an unchecked block.

Code Location:

Listing 18: contracts/contracts/RelayerList.sol (Line 33)

33 for (uint256 i = 0; i < _relayerWallets.length; i++) {

34 _relayers[_relayerWallets[i]] = Relayer(_relayerWallets[i],

ë _relayerAddress[i]);

35 }

Listing 19: contracts/contracts/RelayerList.sol (Line 57)

57 for (uint256 i = 0; i < relayerAddresses.length; i++) {

58 copiedRelayerAddresses[i] = relayerAddresses[i];

59 }

Listing 20: contracts/contracts/RelayerList.sol (Line 65)

65 for (uint256 i = 0; i < 5; i++) {

66 (randomRelayers[i], copiedLength) = _pickAndRemoveRandom(

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



ë copiedRelayerAddresses , copiedLength);

67 randomShares[i] = _generateRandomShare(randomRelayers[i]);

68 }

Listing 21: contracts/contracts/RelayerList.sol (Line 81)

81 for (uint256 i = 0; i < entry.relayers.length; i++) {

82 relayerData[i] = RelayerData(_relayers[entry.relayers[i]].

ë relayerAddress , entry.shareIndices[i]);

83 }

Listing 22: contracts/contracts/VerifierList.sol (Line 38)

37 for (uint i = 0; i < v.checksSize; i++) {

38 checksArray[i] = Check(v.checks[i].key , v.checks[i]. value);

39 }

Listing 23: contracts/contracts/VerifierList.sol (Line 64)

64 for (uint i = 0; i < _checks.length; i++) {

65 v.checks[v.checksSize] = Check(_checks[i].key , _checks[i].

ë value);

66 v.checksSize ++;

67 }

Proof of Concept:

Listing 24

1 function testGasConsumptionForUnoptimized () public pure {

2 uint256 [5] memory array;

3

4 for (uint256 i = 0; i < array.length; i++) { }

5 }

6

7 function testGasConsumptionForOptimized () public pure {

8 uint256 [5] memory array;

9 uint256 arrayLength = array.length;

10

11 for (uint256 i; i < arrayLength ;) {

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



12 unchecked {

13 ++i;

14 }

15 }

16 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider using the following pattern for for loops:

Listing 25

1 uint256 arrayLength = array.length;

2

3 for (uint256 i; i < arrayLength ;) {

4 . . .

5 unchecked {

6 ++i

7 }

8 }

Remediation Plan:

ACKNOWLEDGED: The Haqq team acknowledged this finding and applied some

gas optimization techniques up to commit 55e33fd.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/commit/55e33fd47dc4358bc6a9e352b048297850b140a7


39

AUTOMATED TESTING



5.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them cor-

rectly into their ABIs and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

The security team assessed all findings identified by the Slither soft-

ware, however, findings with severity Information and Optimization are

not included in the below results for the sake of report readability.

Results:

Slither results for RelayerList.sol

Finding Impact

RelayerList._pickAndRemoveRandom(address[],uint256)

(src/RelayerList.sol#48-53) uses a weak PRNG: "randomIndex = uint25

6(keccak256(bytes)(abi.encodePacked(block.timestamp,block.prevranda

o,msg.sender))) % length (src/RelayerList.sol#49)"

High

End of table for RelayerList.sol

Because of the purpose of this function (selecting a Relayer) this finding can

be considered a false positive.

40

AU
TO

MA
TE

D
TE

ST
IN

G



Slither results for VerifierList.sol

Finding Impact

VerifierList.deleteVerifier(string) (src/VerifierList.sol#70-73)

deletes VerifierList.Verifier (src/VerifierList.sol#7-14) which

contains a mapping: -delete verifiers[_id]

(src/VerifierList.sol#72)

Medium

End of table for VerifierList.sol

Please see HAL-02.

No issues were identified in the RelayerStorage.sol file.

Results summary:

In the RelayerList contract, because of the purpose of this function (selecting

a Relayer) the weak PNG generator finding can be considered a false positive.

For more details on the VerifierList contract delete finding, please refer to

HAL-02.

41

AU
TO

MA
TE

D
TE

ST
IN

G



5.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of well-known

security issues and to identify low-hanging fruits on the targets for this

engagement. Among the tools used was MythX, a security analysis service for

Ethereum smart contracts. MythX performed a scan on the smart contracts and sent

the compiled results to the analyzers in order to locate any vulnerabilities.

Results:

No issues were detected by MythX.

42

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	BVSS
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results
	Results summary

	AUTOMATED SECURITY SCAN
	Description
	Results



