// HALBORN

Haqq - Coilnomics
Module

Cosmos Security Assessment

Prepared by: Halborn
Date of Engagement: November 27th, 2023 - December 15th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY

CONTACTS

1

6.1

EXECUTIVE OVERVIEW
INTRODUCTION

ASSESSMENT SUMMARY

SCOPE

RISK METHODOLOGY
EXPLOITABILITY

IMPACT

SEVERITY COEFFICIENT

TEST APPROACH & METHODOLOGY
ASSESSMENT SUMMARY & FINDINGS OVERVIEW
FINDINGS & TECH DETAILS
(HAL-01) USE OF VULNERABLE DEPENDENCIES - LOW(4.4)
Description

Code Location

BVSS

Recommendation

Remediation Plan

MANUAL TESTING

SCENARIOQOS TESTED

RESULTS

AUTOMATED TESTING

Description

10

12

14

15

16

18

18

18

18

19

20

21

22

24

25

6.2

6.3

6.4

6.5

6.6

Semgrep
Security Analysis Output Sample
Semgrep Results

Gosec

Analysis Output Sample

StaticCheck

Analysis Output Sample

CodeQL

Analysis Output Sample (go and cosmos queries)
Nancy

Analysis Output Sample

25

25

26

26

26

26

26

27

27

28

28

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE
0.1 Document Creation 12/14/2023
0.2 Document Updates 12/15/2023
0.3 Draft Review 12/15/2023
0.4 Draft Review 12/15/2023
1.0 Remediation Plan 12/19/2023
1.1 Remediation Plan Review 12/19/2023
1.2 Remediation Plan Review 12/19/2023
CONTACTS
CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Haqq engaged Halborn to conduct a security assessment on their app chain
module beginning on November 27th, 2023 and ending on December 15th, 2023.
The security assessment was scoped to the coinomics module provided to
the Halborn team.

EXECUTIVE OVERVIEW

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided three weeks for the engagement and as-
signed one full-time security engineer to assessment the security of the
merge requests. The security engineers are blockchain and smart-contract
security experts with advanced penetration testing, smart-contract hack-

ing, and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

®* Ensure that the Cosmos Module operates as intended.
®* Identify potential security issues with the coinomics module.

In summary, Halborn identified one low issue that was successfully ad-
dressed by the Hagqg team.

EXECUTIVE OVERVIEW

1.3 SCOPE

IN-SCOPE CODE & COMMIT:

® Repository: haqgg-network/haqq

® Commit ID: 9e61518ead7ceef38193970c3a311133¢c0421de8
®* Module in scope:

® x/coinomics.

REMEDIATION COMMIT IDs:
® 38679ch5d2ad3cf7ff4cbedad3189a154626cd25b

https://github.com/haqq-network/haqq
https://github.com/haqq-network/haqq/tree/9e61518ead7ceef38193970c3a311133c0421de8
https://github.com/haqq-network/haqq/commit/38679c5d2ad3cf7ff4c5edad3189a154626cd25b

EXECUTIVE OVERVIEW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two
sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability
captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of
the ranking with two factors: Reversibility and Scope. These capture the
impact of the vulnerability on the environment as well as the number of
users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and
10 corresponding to the highest security risk. This provides an objective
and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-
nerabilities based on their level of risk to address the most critical
issues in a timely manner.

EXECUTIVE OVERVIEW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker
relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in
order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

Metrics:
Exploitability Metric . :
Metric Value Numerical Value
(mg)
L Arbitrary (AO:A) 1
Attack Origin (AO) o
Specific (AO:S) 0.2
Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33
Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability /£ is calculated using the following formula:

E = n Me

EXECUTIVE OVERVIEW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources
managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-
ity. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit
or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-
sulting from a successfully exploited vulnerability. This metric refers
to smart contract features and functionality, not state. Availability
impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either
users or owners.

10

EXECUTIVE OVERVIEW

Metrics:

Impact Metric

Metric Value

Numerical Value

(mp)

None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (I:N) 0
Low (I:L) 0.25
Integrity (I) Medium (I:M) 0.5
High (I:H) .75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical 1

None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium: (Y:M) 0.5
High: (Y:H) 0.75

Critical (Y:H)

Impact / is calculated using the following formula:

I = max(my) +

> my; — max(my)

4

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be
reversed. For upgradeable contracts, assume the contract private key is
available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-
sources in other contracts.

EXECUTIVE OVERVIEW

Coefficient _ :
©) Coefficient Value Numerical Value
None (R:N) 1
Reversibility (r) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25

Scope (s)

Unchanged (S:U)

Severity Coefficient (' is obtained by the following product:

C=rs

12

EXECUTIVE OVERVIEW

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC = 10)

The score is rounded up to 1 decimal places.

Severity Score Value Range
Critical 9 -10
High 7 -8.9
4.5 - 6.9
2 - 4.4
0 -1.9

13

EXECUTIVE OVERVIEW

2.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing
to balance efficiency, timeliness, practicality, and accuracy in regard
to the scope of the custom modules. While manual testing is recommended
to uncover flaws in logic, process, and implementation; automated testing
techniques help enhance coverage of structures and can quickly identify
items that do not follow security best practices. The following phases
and associated tools were used throughout the term of the assessment :

® Research into architecture and purpose.

®* Static Analysis of security for scoped repository, and imported func-
tions. (e.g., staticcheck, gosec, unconvert, codeql, ineffassign
and semgrep)

®* Manual Assessment for discovering security vulnerabilities on code-
base.

®* Ensuring correctness of the codebase.

®* Dynamic Analysis on files and modules in-scope.

14

EXECUTIVE OVERVIEW

3. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW

CRITICAL

HIGH

0

15

EXECUTIVE OVERVIEW

SECURITY ANALYSIS

(HAL-01) USE OF VULNERABLE
DEPENDENCIES

RISK LEVEL

REMEDIATION DATE

16

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

4.1 (HAL-01) USE OF VULNERABLE
DEPENDENCIES - LOW (4.4)

Description:

A variety of vulnerabilities exists in dependencies used by the project’s

coinomics module.

Code Location:

Vulnerabilities flagged by the tool nancy:
ID Package Rating Description
CVE-2022-44797 | btcd CRITICAL Reachable Assertion

CVE-2022-39389 | btcd MEDIUM Improper Input Validation
ID Package Rating Description
CVE-2023-28642 | runc HIGH Improper Preservation of Permissions
CVE-2023-27561 | runc HIGH Incorrectly-Resolved Name or Reference
CVE-2023-25809 | runc MEDIUM Improper Preservation of Permissions

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:L/D:

Recommendation:

L/Y:L/R:N/S:U (4.4)

Where possible, keep dependencies patched in order to reduce the risk of

the system being attacked using known vulnerabilities. It is recommended

that the Hagq team runs the nancy and govulncheck, tools regularly and

fix as many warnings as possible.

18

https://ossindex.sonatype.org/vulnerability/CVE-2022-44797
https://ossindex.sonatype.org/vulnerability/CVE-2022-39389
https://ossindex.sonatype.org/vulnerability/CVE-2023-28642
https://ossindex.sonatype.org/vulnerability/CVE-2023-27561
https://ossindex.sonatype.org/vulnerability/CVE-2023-25809

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The Haqg team solved the issue by upgrading the btcd dependency
to a new version.

Commit ID: 38679cb5d2ad3cf7ff4c5edad3189a154626cd25b

19

https://github.com/haqq-network/haqq/commit/38679c5d2ad3cf7ff4c5edad3189a154626cd25b

MANUAL TESTING

MANUAL TESTING

5.1 SCENARIOS TESTED

In the manual testing phase, the following scenarios were simulated. It
must be taken into account that it’s been reviewed every test found in
x/coinomics and sub-folders, which almost covers each component of the

project. The following scenarios are covered in these unit tests:

®* Tests 1: Keeper tests

® Tests 1.1: Tests for MaxSupply feature

® Test 1.1.1: Test using MaxSupply default value.
® Test 1.1.2: Test using MaxSupply value set in run-time.

®* Test 1.2: Tests for module params.
®* Test 1.3: Tests for module query params

Tests 1.4: Tests for RewardCoefficient feature

®* Test 1.4.1: Test using RewardCoefficient default value.
® Test 1.4.2: Test using RewardCoefficient value set in run-
time.

®* Tests 1.5: Tests for get/set MaxSupply methods
® Test 1.5.1: Test using get/set methods with MaxSupply de-

fault value.
® Test 1.5.2: Test using get/set methods with MaxSupply value
set in run-time.

® Tests 1.6: Tests for get/set PrevBlockTs methods

® Test 1.6.1: Test using get/set methods with PrevBlockTs
default value.

® Test 1.6.2: Test using get/set methods with PrevBlockTs
value set in run-time.

® Tests 2: Genesis tests

® Test 2.1: Genesis validation tests

The general module executing was tested using ginkgo, simulating some
parts of the code and states that the module will reach during its
execution.

21

MANUAL TESTING

Simulations 1: Mint results when coinomics module is disables.
Simulations 2: Mint results when coinomics is enabled on a regular
year.

® Simulations 3: Mint results when coinomics is enabled on a leap
year.

Simulations 4: Mint results when coinomics is enabled and MaxSupply
is reached.

These tests and simulations cover an 85.2% of the coinomics module.

)
m
[92]
c
=
—
wn

RUN TestKeeperTestSuite

RUN TestKeeperTestSuite/TestMaxSupply

RUN TestKeeperTestSuite/TestMaxSupply/Case default_max_supply

RUN TestKeeperTestSuite/TestMaxSupply/Case set max supply

RUN TestKeeperTestSuite/TestParams

RUN TestKeeperTestSuite/TestQueryParams

RUN TestKeeperTestSuite/TestRewardCoefficient

RUN TestKeeperTestSuite/TestRewardCoefficient/Case default reward coefficient
RUN TestKeeperTestSuite/TestRewardCoefficient/Case set reward coefficient

RUN TestKeeperTestSuite/TestSetGetMaxSupply

RUN TestKeeperTestSuite/TestSetGetMaxSupply/Case default MaxSupply

RUN TestKeeperTestSuite/TestSetGetMaxSupply/Case MaxSupply set

RUN TestKeeperTestSuite/TestSetGetPrevBlockTs

RUN TestKeeperTestSuite/TestSetGetPrevBlockTs/Case default prevblockts

RUN TestKeeperTestSuite/TestSetGetPrevBlockTs/Case prevblockts set

Running Suite: Keeper Suite - /haqg/x/coinomics/keeper

Random Seed: 1762657147

Ran 4 of 4 Specs in 0.323 seconds
SUCCESS! -- 4 Passed | © Failed | @ Pending | @ Skipped
--- PASS: TestKeeperTestSuite (0.49s)
--- PASS: TestKeeperTestSuite/TestMaxSupply (0.85s)
--- PASS: TestKeeperTestSuite/TestMaxSupply/Case default max supply (0.01s)
--- PAS5: TestKeeperTestSuite/TestMaxSupply/Case_set max_supply (0.81s)
--- PASS: TestKeeperTestSuite/TestParams (0.81s)
--- PASS: TestKeeperTestSuite/TestQueryParams (8.81s)
--- PASS: TestKeeperTestSuite/TestRewardCoefficient (0.83s)
--- PAS5: TestKeeperTestSuite/TestRewardCoefficient/Case_default_ reward_coefficient (©.81s)
--- PASS: TestKeeperTestSuite/TestRewardCoefficient/Case set reward coefficient (0.01s)
--- PASS: TestKeeperTestSuite/TestSetGetMaxSupply (©.83s)
--- PASS: TestKeeperTestSuite/TestSetGetMaxSupply/Case default MaxSupply (0.01s)
--- PAS5: TestKeeperTestSuite/TestSetGetMaxSupply/Case MaxSupply_set (8.01s)
--- PASS: TestKeeperTestSuite/TestSetGetPrevBlockTs (0.84s)
--- PAS5: TestKeeperTestSuite/TestSetGetPrevBlockTs/Case default prevblockts (8.81s)
--- PASS: TestKeeperTestSuite/TestSetGetPrevBlockTs/Case prevblockts set (©.81s)
PASS
ok github.com/haqqg-network/haqq/x/coinomics/keeper B.532s

Figure 1: Keeper unit tests results

MANUAL TESTING

RUN TestGenesisTestSuite

RUN TestGenesisTestSuite/TestValidateGenesis

PASS: TestGenesisTestSuite (B.88s)

--- PASS: TestGenesisTestSuite/TestValidateGenesis (0.88s)
PASS

ok github.com/hagq-network/haqq/x/coinomics/types (cached)

Figure 2: Genesis unit tests results

Will run 4 of 4 specs

Coinomics Check coinomics on regular year with coinomics disabled should not mint coins when coinomics is disabled
/haqq/x/coinomics/keeper/integration_test.go:51

+ [0.147 seconds]

Coinomics Check coinomics on regular year with coinomics enabled check mint calculations on regular year
/haqq/x/coinomics/keeper/integration_test.go:79

= [0.855 seconds]

Coinomics Check coinomics on regular vear with coinomics enabled check mint calculations for leap year
/haggq/x/coinomics/keeper/integration_test.go:154

= [0.834 seconds]

Coinomics Check coinomics on regular year with coinomics enabled check max supply limit
/haqq/x/coinomics/keeper/integration test.go:229

= [B.899 seconds]

Ran 4 of 4 Specs in 08.335 seconds
SUCCESS! -- 4 Passed | 0@ Failed | 0 Pending | @ Skipped
PASS
github.com/haqq-network/haqq/x/coinomics/keeper coverage: 85.2% of statements
composite coverage: 85.2% of statements

Ginkgo ran 1 suite in 6.482353207s
Test Suite Passed

Figure 3: Ginkgo tests results

23

AUTOMATED TESTING

AUTOMATED TESTING

6.1 Description

Halborn used automated testing techniques to enhance coverage of certain
areas of the scoped component. Among the tools used were staticcheck,
gosec, semgrep, codeQL and Nancy. After Halborn verified all the contracts
and scoped structures in the repository and was able to compile them
correctly, these tools were leveraged on scoped structures. With these
tools, Halborn can statically verify security related issues across the
entire codebase.

6.2 Semgrep

Security Analysis Output Sample:

1 semgrep --config "p/dgryski.semgrep-go"” x/liquidstakeibc --exclude
L, ='*_test.go' --max-lines-per-finding 1000 --no-git-ignore -o

L, dgryski.semgrep

2 semgrep --config "p/owasp-top-ten” x/liquidstakeibc --exclude
LL ='x_test.go' --max-lines-per-finding 1000 --no-git-ignore -o owasp
L, -top-ten.semgrep

3 semgrep --config "p/r2c-security-audit” x/liquidstakeibc --exclude
L, ='*_test.go' --max-lines-per-finding 1000 --no-git-ignore -o r2c-
L, security-audit.semgrep

4 semgrep --config "p/r2c-ci” x/liquidstakeibc --exclude
L, ='*_test.go' --max-lines-per-finding 1000 --no-git-ignore -o r2c-
L, ci.semgrep

5 semgrep --config "p/ci” x/liquidstakeibc --exclude
LL ='x_test.go' --max-lines-per-finding 1000 --no-git-ignore -o ci.

L, semgrep

6 semgrep --config "p/golang"” x/liquidstakeibc --exclude
LL ='*_test.go' --max-lines-per-finding 1000 --no-git-ignore -o

L, golang.semgrep

7 semgrep --config "p/trailofbits” x/liquidstakeibc --exclude
L, ='*_test.go' --max-lines-per-finding 1000 --no-git-ignore -o

L, trailofbits.semgrep

25

AUTOMATED TESTING

Semgrep Results:

6.3

No major issues found by Semgrep.

Gosec

Analysis Output Sample:

[/haqq/x/coinomics/keeper/inflation.go:43] - G783 (CWE-): Returned error
a2: bankTotalSupply, _ := sdk.NewDecFromstr(k.bankKeeper.GetSupply(ctx, params.MintDenom).Amount.String())
> 43 Supply, _ := sdk.NewDecFromstr(k.GetMaxSupply(ctx).Amount.String()
a4
[/hagq/x/coinomics/keeper/inflation.go:42] - G763 (CWE-): Returned error
41:
> 42: bankTotalsupply, _ := sdk.NewbecFromstr(k.bankKeeper.GetSupply(ctx, params.MintDenom).Amount.String())
43: supply, _ := sdk.NewbecFromstr(k.GetMaxsupply(ctx) .Amount.String()
[/haqq/x/coinomics/keeper/inflation.go:37] - G783 (CWE-): Returned error
36: prevBlockTs, sdk. NewDecFrnmStr(k GetPrevBLockTs (ctx) .String()
> 37 _ := sdk.NewbecFromstr(k.staki ~Total ctx).string()
38:
[/haqq/x/coinomics/keeper/inflation.go:36] - G703 (CWE-): Returned error
35: rewardCoefficient arams.RewardCoefficient.Quo(sdk.NewDec(100))
> 36: prevBlockTs, _ -NewDecFromstr(k.GetPrevBlockTs (ctx) .String())
37: totalBonded, sdk.NewDecFromstr (k. stakingKeeper.TotalBondedTokens (ctx) .String()
[/haqq/x/coinomics/keeper/inflation.go:38] - G783 (CWE-): Returned error
29: } else {
> 30: yearInMillis, _ = sdk.NewDecFromstr("31536600000") // 365 days in milliseconds
31: }
L /haqq/x/coinomics/keeper/inflation.go:28] - G763 (CWE-): Returned error
27 if isLeapYear {
> 28: yearInMillis, _ = sdk.NewDecFromstr("31622460000") // 366 days in milliseconds
20 } else {
[/haqq/x/coinomics/keeper/inflation.go:13] - G783 (CWE-): Returned error
12: // Convert current block timestamp to Dec type for calculations
> 13; currentBlockTs, sdk.NewDecFromStr(math.NewInt(ctx.BlockTime().UnixMilli()).String())
14:

6.4

Analysis Output Sample:

(64, 66) SA1619

(11, 49) sAle19
(18, 23) SsAle19
(27, 61) sA1e19

(38, 38) sA1019
(39, 37) sA1e19

SA1619

is

is

is

is

is

is

is

not propagated up the stack. (Confidence: HIGH, Severity: LOW)

not propagated up the stack. (Confidence: HIGH, Severity: LOW)

not propagated up the stack. (Confidence: HIGH, Severity: LOW)

not propagated up the stack. (Confidence: HIGH, Severity: LOW)

not propagated up the stack. (Confidence: HIGH, Severity: LOW)

not propagated up the stack. (Confidence: HIGH, Severity: LOW)

not propagated up the stack. (Confidence: HIGH, Severity: LOW)

Figure 4: Gosec results

No major issues found by Gosec.

StaticCheck

- /haga/x/coinomics/keeper/keeper.go
sdk.Int is deprecated: Functionality of this package has been moved to it's own module: cosmossdk.io/math

/haqa/x/coinomics/keeper/mint_info.go
sdk.Int is deprecated: Functionality of this package has been moved to it's own module: cosmossdk.io/math
sdk.Int is deprecated: Functionality of this package has been moved to it's own module: cosmossdk.io/math
sdk.Int is deprecated: Functionality of this package has been moved to it's own module: cosmossdk.io/math

- w/hagq/x/coinomics/types/interfaces.go
G0 THT TuNuapracated PINETIERRL1c) LOTL FISH Ak Baal 18¥ iece) naVaqlto) ot A mar moL1eS (cosmnrauk K10/ ath
sdk.Int is deprecated: Functionality of this package has been moved to it's own module: cosmossdk.io/math
- rhaqa/x/coinomics/types/query.pb.gw.
“github.com/golang/protobuf/descriptor” is deprecated: See the gnng\e golang.org/protobuf/reflect/protoreflect"

ramatically interact with the protobuf type system.

2) sA1019

"github g /proto” is : Use the "google.gol g/protobuf/proto” package instead.

package for how to obtain an EnumDescriptor or MessageDescriptor in order to prog

(33, 9) SAlels descriptor.ForMessage is deprecated: Not all concrete message types satisfy the Message interface. Use MessageDescriptorProto instead. If possible, the calling code should be rewritten to use pr
otobuf reflection instead. See package "google.golang.org/protobuf/reflect/protoreflect” for details.

Figure 5: StaticCheck results

AUTOMATED TESTING

®* No major issues found by StaticCheck.

6.5 CodeQL

Analysis Output Sample (go and cosmos queries):

~ mint_info.go x/EOINOMIES/ keeper (3

AN Possible panics in BeginBock- or EndBlock-related consensus methods could cause a chain halt
A 30 Possible panics in BeginBock- or EndBlock-related consensus methods could cause a chain halt
A 49 Possible panics in BeginBock- or EndBlock-related consensus methods could cause a chain halt
~ abci.go x/E0INGMIES/ keeper (1
A 22 path flow from Begin/EndBlock to a panic call path flow from Begin/EndBlock to a panic call path flow from Begin/EndBlock to a panic call

~ module.go x/Eainomics 1
A\ 156 path flow from Begin/EndBlock to a panic call path flow from Begin/EndBlock to a panic call path flow from Begin/EndBlock to a panic call

Figure 6: CodeQL results

®* No major issues found by CodeQL in scoped module.

27

AUTOMATED TESTING

6.6 Nancy

Analysis Output Sample:

$thub btcsuite/btedavd.22.2
2 known vulnerabilities affecting installed version

[CVE-2022-44797] CHE-617: Reachable Assertion

Description bted before 0.23.2, as used in Lightning Labs Lnd before 6.15.2-beta and
other Bitcoin-related products, mishandles witness size checking.

Sonatype's research suggests that this CVE's details differ from those
defined at NVD. See
https://ossindex.sonatype.org/vulnerability/CVE-2022-44797 for details

055 Tndex TD CVE-2022-44797
s score 9.8/10 (Critical)
CVss Vector CVSS:3.1/AV:N/AC:L/PR:N/UT:N/S:U/C:H/T:H/A:H

Link for more info | https:

/ossindex. sonatype .org/vulnerability/CVE-2622-447977component - type=golang&component -name=github . coms2Fbtcsuite%2Fbt cdsutn_source=nancy-client&utm_medium=integration&utm_content=0.0.0-dev

[CVE-2022-39389] CWE-20: Improper Input Validation

Description Lightning Network Daenon (lnd) is an implementation of a lightning bitcoin
overlay network node. ALL Ind nodes before version 'v8.15.4" are vulnerable
0 2 block parsing bug that can cause a node to enter a degraded state once
encountered. In this degraded state, nodes can continue to make payments
and forvard HTLCs, and close out channels. Opening channels is prohibited,
and also on chain transaction events will be undetected. This can cause
loss of funds if a CSV expiry is researched during a breach attempt or a
CLTV delta expires forgetting the funds in the HTLC. A patch is available
in “lnd' version ©.15.4. Users are advised to upgrade. Users unable to
upgrade may use the 'lncli updatechanpolicy’ RPC call to increase their
CLTV value to a very high amount or increase their fee policies. This will
prevent nodes from routing through your node, meaning that no pending HTLCs
can be present.

Sonatype's research suggests that this CVE's details differ from those
defined at NVD. See

https: //0ssindex.sonatype.org/vulnerability/CVE-2022-39389 for details
055 Tndex TD CVE-2022-39389
Qss score 6.5/10 (Medium)
CVss Vector CVSS:3.1/AV:N/AC:L/PR:N/UT:N/S:U/C:N/T:L/A:L

Link for more info | https:

/ossindex.sonatype.org/vulnerability/CVE-2022-393897component - type=golang&component -name=github . coms2Fbtcsuite%2Fbt cdsutn_source=nancy-clientsutm_medium=integrationsutm_content=0.0.0-dev

pkg: golang/github. con/opencontainers/runcevl. 1.4
3 known vulnerabilities affecting installed version

[CVE-2023-28642] CWE-281: Improper Preservation of Permissions

Description runc is a CLT tool for spawning and running containers according to the 0CI
specification. It was found that AppArmor can be bypassed when '/proc'
inside the container is synlinked with a specific mount configuration. This
issue has been fixed in runc version 1.1.5, by prohibiting symlinked
“/proc’. See PR #3785 for details. users are advised to upgrade Users
unable to upgrade should avoid using an untrusted container image.

055 Index ID CVE-2023-28642
s Score 7.8/18 (High)
CVSs Vector CVS5:3.1/AV:L/AC:L/PR:L/UT:N/S:U/C:H/T:H/AH

Link for more info

https://ossindex.sonatype.org/vulnerability/CVE -2023 -286427component - type=golang&component -name=-gi thub . com2Fopencontainers%Frunciutn_source=nancy-client&utm_medium-integrationsutn_content-0.0.0-dev

[CVE-2023-27561] CWE-706: Use of Incorrectly-Resolved Name or Reference

Description runc through 1.1.4 has Incorrect Access Control leading to Escalation of
Privileges, related to Libcontainer/rootfs Linux.go. To exploit this, an
attacker must be able to spawn two containers with custom volume-mount
configurations, and be able to run custom images. NOTE: this issue exists
because of a CVE-2019-19921 regression.

055 Index ID CVE-2023-27561

cvss score /10 (High)

CUSS Vector CUSS:3.1/AV: L/AC: H/PR:L/UT:N/S: U/C:H/T:H/AH

~name=gi thub

Link for more info | https://ossindex.sonatype.org/vulnerability/CVE-2023-275617component - typs

_sour y-clientautm_medi

ionutm_content=0.0.9-dev

[CVE-2623-25800] CWE-281: Improper Preservation of Permissions

Description runc is a CLI tool for spawning and running containers according to the OCI
specification. In affected versions it was found that rootless runc makes
/sys/fs/cgmup writable in following conditons: 1. when runc is executed
side the user namespace, and the ~config.json' does not s
cgroup n:;mesp:;:e I e (O, R e e A
--cgroupns=host, with Rootless Docker/Podman/nerdctl) or 2. when runc is
B2l QS e L R A */sys' is mounted with “rbind, ro
(e.g., “runc spec --rootless’; this condition is very rare). A container
may gain the write access o el e ey
* /sys/fs/cgroup/user.slice/ n the r users's cgroup
o B Frve i oo o vt LT o S
o Uiz [l & [0 oy Il 2 ety s
RRCER e [et M ST it e ot SR TP A T

behavior of Dockery poduan/nerdctl on caroup vz hsts. or add
*/sys/fs/cgroup’ to 'maskedPaths’

Sonatype's research suggests that this CVE's details differ from those
defined at NVD. See
https://ossindex. sonatype.org/vulnerability/CVE-2623-25869 for details

055 Index ID CVE-2023-25809

cvss score 6.3/10 (Medium)

CUSS Vector CUSS:3.1/AV:L/AC: L/PR:L/UT:N/S: C/C:L/T: L/AL

~name=gi thub

Link for more info | https://ossindex.sonatype.org/vulnerability/CVE-2023-258097component - typs

_sour y-clientautm_medi

ionutm_content=0.0.9-dev

2 Vulnerable Packages

Sunmary

Audited Dependencies | 179

Vulnerable Dependencies | 2

®* No major issues found by Nancy.

28

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	SCOPE

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	TEST APPROACH & METHODOLOGY

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	MANUAL TESTING
	SCENARIOS TESTED
	RESULTS

	AUTOMATED TESTING
	Description
	Semgrep
	Security Analysis Output Sample
	Semgrep Results

	Gosec
	Analysis Output Sample

	StaticCheck
	Analysis Output Sample

	CodeQL
	Analysis Output Sample (go and cosmos queries)

	Nancy
	Analysis Output Sample

